设计师必须掌握数据分析要点人人都是产品

编辑导语:对于设计师来说,熟练运用数据分析很重要,只有掌握了数据才能摸清用户需求,从而设计出用户满意的产品。本文作者以数据分析为中心,逐层抽丝剥茧,回答了数据分析要解决什么问题?数据分析师的工作是什么样的?数据分析的流程有哪些?最后,为我们总结了一些注意事项。

交互设计师通常会有一个苦恼,不知道如何去衡量自己的方案是否有效。毕竟发声的用户都是对体验不满的用户,没有问题的用户都是沉默的。

针对上面的这些问题,笔者根据这么多年的设计经验,总结了两种方法:

定性法:

当你的产品没有办法收集大量数据的时候,只能定性的去观察分析这个产品体验的好坏了。

如:很多B端的用户界面,很难收集完整的数据或用户反馈,只能通过专家走查或者收集用户意见来判断产品是否好用。常用的方法有:Google的HEART模型、阿里的TECH模型。

定量法:

如果你的产品是很成熟的C端产品,可以收集大量用户数据,并将这些数据可视化,去分析用户如何使用产品,设计师也可以很好的去量化设计的效果。

如:DAU涨了5%、人均VV降了0.4、CTR提高了10%等等,可以很客观的衡量设计方案的效果。

以上这两种方法,都是数据收集的过程,第一种更感性,第二种更理性客观。

一、数据分析要解决什么问题?

那数据分析能帮助我们解决哪些问题呢?

1.研究历史

举个例子:视频行业某个产品的DAU有一段时间突然迅猛增长。

如果是一个新手设计师,可能会困惑:这段期间没有做任何需求和活动,为何数据会涨?然后他去看看了去年的DAU趋势,才恍然大悟:原来是每次到了寒暑假的周期,孩子们放假了,就会呆在家看视频,DAU自然会涨。

由此可见,数据分析可以帮设计师客观的描述事实,追溯历史。但有个小问题,就是这些数据都是存储在云端的,服务器的内存是有限,有的公司只能存1-3月的数据,这样就会导致无法追溯太久远的数据。

2.解释现状

对于一些核心数据,如:DAU、PV、用户停留时长,它们时刻都在变化,需要每天监测。帮助检查线上是否出现设计事故,也可以用来评估设计方案上线后的效果如何。

3.预测未来

在了解问题发生原因的基础上,设计师也可以根据曲线预测业务的发展趋势和影响程度。

张小龙曾经在


转载请注明:http://www.bainiangudus.com/jbxx/26060.html